are clearly in the direction of more perfect adaptation to the conditions of a freeswimming pelagic existence.

Fig. 16.-Semi-diagrammatic representation of Salpa from the left side.
a. anus ; at. atrial aperture; at.m. musoles of atrial aperture; br. branchial nperture; br:m. muscles of branchinl aperture; br.s. branchial sac; d.l. dorsal lamina ($=$ "gill"); d.t. dorsal tubercle; end. endostyle; h. heart;
 ovisao ; p.br. peribranohial cavity; p.p. peripharyngenl band; st. stomach; s.gl. subneural gland; t. test; t.' thickened test over viscera; tes. testis ; z. zona prrebranchialis.

The very remarkable Octacnemus bythius, described first by Moseley from a Challenger specimen, is probably an abnormal and degenerate form allied to Salpa, which has migrated into deep water and become fixed, undergoing at the same time certain changes in body-form and in the arrangement of the musculature. The viscera, however, still form a "nucleus" as in the typical Salpæ (compare Figs. 16 and 17).

Fig. 17.-Diagram showing the probable struoture of Octarnemus. . (From left side.)
ad. probable place of attaohment; at. ntrial aperture; at.m. membrane lining the peribranohial cavity; br. branchial aperture; br.s. branchial sac ; end. end' portions of endostyle; i. intestine ; m. mantle ; n.g. nerve ganglion ; ce. cosophagus ; ov. ovary and testis ; p.lr. peribranohial oavity ; st. stomach; t. test.

The side walls of the branchial sac in Octacnemus have not become aborted, and the stigmata have apparently closed up.

Returning now to the ancestral Appendiculariidæ close to Appendicularia mossi (table, p. 120), it is found that in the second great ancestral line diverging from this

